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SUR L’ESPACE DE PROLONGEMENT DIFFERENTIABLE

NGO VAN QUE

Si V est une variété (différentiable C*~), nous désignerons par @ son faisceau
structural de fonctions et par T son fibré tangent. Dans la suite nous sup-
poserons connue la notion de groupoide de Lie dont V' est I’espace des unités
et d’espace fibré associé [1], [4]. Le but de ce travail est de démontrer que
tout espace fibré vectoriel (différentiable) de prolongement d’une variété V
est, du moins lorsque V' est compact, un espace de prolongement infinitésimal
d’un certain ordre k au sens de C. Ehresmann, i.e. associé au groupoide de
Lie I7* des jets d’ordre k des difféomorphismes locaux de V. Ce résultat est
essentiellement basé sur le théoréme de J. Peetre [5], qui donne la caractéri-
sation des opérateurs différentiels linéaires.

Je suis heureux de reconnaitre que dans ce travail je dois beaucoup & une
discussion détaillée avec les professeurs M. Kuranishi et D. C. Spencer.

1. Le faisceau de R-algébre de Lie d’un groupoide de Lie

Soit @ un groupoide de Lie dont I est I’espace des unités. Pour tout point
x de V, @, est I’ensemble des éléments de @ de source x. Rappelons que
@, est un espace fibré principal sur V' & groupe structural de Lie, le groupe
d’isotropie G, en x de @. Et nous avons la suite exacte d’Atiyah de fibrés
vectoriels sur V

0— I(§) — A@)) —>T—0,

ol I(@) est le fibré en algébres de Lie d’isotropie de @ et A(@,) est le fibré
vectoriel dont le faisceau des sections A(@,) est le faisceau défini sur V" des
champs de vecteurs de @, invariants par 1’action a droite du groupe structural
G,. 1l est immédiat de constater que le crochet des champs de vecteurs définit
canoniquement sur le faisceau A(@,) une structure de faisceau de R-algebre
de Lie telle que la suite exacte d’Atiyah définisse, si nous en considérons les
faisceaux de sections, une suite exacte de faisceaux de R-algébre de Lie, le
faisceau 7T étant muni du crochet des champs de vecteurs. Comme le fibré
A(D,) est en fait défini indépendamment du choix du point de base x (i.e.
pour tout autre point y de V, il existe un isomorphisme canonique de fibrés
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vectoriels de 4(@,) sur A(P,), qui est aussi un isomorphisme de faisceaux de
R-algébre de Lie) nous noterons simplement par A(@) le fibré vectoriel A(@.)
et nous appellerons le faisceau A(@) le faisceau de R-algébre de Lie du
groupoide de Lie @. T

Exemples.

1 (voir [4]). Si II* est le groupoide de Lie de tous les jets d’ordre & des
difféomorphismes locaux de V, le fibré A(I1¥) n’est autre que le fibré vectoriel
Jo(T) des jets d’ordre k des sections de T et la structure de faisceau de R-
algebre de Lie de A(IT%) est celle de J(7) définie par le crochet suivant

X, fi*Y] = fi*lX, Y1 + (X-Hi*Y

ol X -f est la dérivée de la Lie de la fonction (différentiable) f par le champ
de vecteurs X et [X, Y] est le crochet connu des champs de vecteurs X et Y.

2 (a comparer avec [2]). Si E est un espace fibré vectoriel sur V', I1(E)
désigne le groupoide de Lie de tous les isomorphismes linéaires de fibres sur
fibres de E. Le faisceau A(J7(E)) n’est autre que le faisceau de @-modules
sur ¥V de tous les opérateurs différentiels D d’ordre 1 de E dans E, tels que
leur symbole étant une section de EQ® E*® T, soit de la forme Id ® X, ou
Id est la section ‘“‘identité” de E @ E*, ou encore de fagon plus précise, des
opérateurs différentiels D de E dans E tels que pour toute section s de E et
toute fonction f sur ¥, on ait

D(fs) = (X-fis + fD(s) ,

le champ de vecteurs X étant b(D) dans la suite exacte d’Atiyah. La structure
de R-algébre de Lie de A(JI(E)) est alors définie par le commutateur des
opérateurs différentiels

[D,D]=DoD' —D' oD .

3. Si @ est le groupoide de Lie trivial, i.e. la variété produit ¥V x G X V,
avec G un groupe de Lie, et munie de la loi de composition partielle

@ u, -, u,x)= @, u1,x),

le faisceau A(@) est le faisceau de ¢-modules sur ¥ des couples (g, X) ou X
est un charﬂﬁcal de vecteurs, et g une fonction locale sur ¥ a valeurs dans
I’algebre de Lie de G. La structure de R-algébre de Lie de A(Q) est alors
définie par le crochet suivant T

[(g: X), (gls Y)] = ([g: g,] + X'g, - Y'g> [Xs Y]) >

ol les notations sont habituelles, par exemple X - g’ désigne la dérivée de Lie
de la fonction g’ par le champ de vecteurs X, et [g, £'] est la nouvelle fonction
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de V' a valeurs dans 1’algébre de Lie de G définie de fagon canonique 4 partir
de g et g par le crochet dans 1’algébre de Lie de G.

2. Théoréme de représentation pour les groupoides de Lie

Soient @ et @’ deux groupoides de Lie ayant la méme variété V' comme
espace des unités. Nous avons la notion bien connue de représentation (ou
foncteur, dans la terminologie de C. Ehresmann) de @ dans ¢’ [1], [4]. Une
représentation est une application différentiable R de ¢ dans ¢, qui soit aussi
un morphisme d’espaces fibrés sur V' X V, i.e.

aoR=a, bOsz,

a et b étant respectivement 1’application source et but de ¢ et @’ sur V, et
telle que si z et 2 sont deux éléments de @ dont la composition z’-z7* est
définie, on ait

R(z'-z7%) = R(Z)-R()*.

11 est cependant nécessaire d’introduire la définition suivante :

Définition de la représentation locale. Nous appellons représentation
locale de @ dans @’ toute application différentiable R d’un voisinage U de
I’espace des unités de @ a valeurs dans @’ telle que

1. siaet b sont respectivement application source et but de @ et ¢, on
ait acR=aetboR =b;

2. sizetZ sont deux €léments de U, dont la composition Z’-Z7! est aussi
un élément de U, on ait

R(Z:z7Y) = R(Z)-R()* .

Dans la suite, nous identifierons deux représentations locales définies re-
spectivement sur les voisinages U et U’ de I’espace des unités dans @, telles
qu’elles induisent sur U N U’ une méme représentation locale.

Définition de la représentation “infinitésimale”. Une représentation infini-
tésimale # de @ dans @’ est un morphisme de faisceaux de ¢-modules sur V'
de A(®) dans A(D") tel que

1. b étant le morphisme canonique de A(P) et de A(¢’) sur T dans la suite
d’Atiyah, on ait b o Z = b;

2. & soit aussi un morphisme de faisceaux de R-algébre de Lie sur V,
i.e. si D et D’ sont deux sections de A(®) on ait

Z(D, D)) = [Z(D), Z(D")] -

Théoréme. Toute représentation locale de @ dans @’ induit une représen-
tation infinitésimale. Et inversement toute représentation infinitésimale définit
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une et une seule représentation locale dont elle est la représentation infinité-
simale induite.

Démonstration. La premiére assertion est immédiate. Nous allons dé-
montrer la deuxieme assertion. Il suffit évidement de faire une étude locale.
Soit donc % un ouvert simplement connexe de V', tel que ’ensemble des
éléments de @ (respectivement ¢’) ayant source et but dans % forme un
groupoide de Lie trivial  x G x % (respectivement % X G’ X %). Sur %,
le faisceau A(@) (respectivement A(P")) est alors le faisceau de @-modules
des couples (g, X) ou g est une fonction de # avaleurs dans ’algébre de Lie
de G, et X, un champ de vecteurs sur % (respectivement (g’, X) et G'); la
représentation infinitésimale donnée est un morphisme de faisceaux de @-
modules

A&, X) = (1(®) + w(X), X),

tel que

(1) o([X, Y)]) = [0X), o¥)] + X-0(Y) — Y- wlX),
(2) r((&, &) = [r(g, r(€)]1 ,

(3) rX-g) = X-r(g) + [oX), r(9)] .

a. La relation (1) s’écrit d’ailleurs sirnplement sous la forme classique
do + [w, ®] = 0 (Maurer-Cartan),

ol dw est la différentielle extérieure de la forme w de degré 1 sur # a valeurs
dans I’algebre de Lie de G’. D’aprés le théoréme de Frobenius, % étant
simplement connexe, pour tout point x de %, il existe une et une seule appli-
cation différentiable f

f:% -G,
y — f(y, X),

x— f(x,x) = ¢,

élément neutre de G’ telle que w = f~*-df (notation classique). Et il est im-
médiat de constater que si z est un point quelconque de %, la fonction

Yo —G,
vy~ f(y, 9 f(x, )7 .

a les mémes propriétés que la fonction f relative au point x; donc par unicité,
nous avons

(4) f(ya x):f(y,Z)'f(x,Z)_l.
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b. L’application r peut étre considérée comme une fonction sur % a
valeurs dans ’espace des applications linéaires de 1’algebre de Lie de G dans
celle de G, telle que pour tout point x, la valeur r; soit une représentation
d’algébre de Lie (condition (2)). Pour x fixé, la représentation r, définit une
et une seule représentation locale p, du groupe de Lie G dans G’, comme il
est bien connu. Et nous noterons par W le voisinage de 1’élément neutre dans
G, sur lequel cette représentation locale est définie. Pour tout autre point y
de % désignons par p, la représentation locale de G dans G’

oy WG,

(5) -
u— @y, %) o) -y, ) .

¢. Désignons par »’ la fonction sur % & valeurs dans ’espace des applica-
tions linéaires de 1’algébre de Lie de G dans celle de G’, dont la valeur 7,
pour tout point y de % est la représentation d’algebres de Lie induite par la
représentation locale p, définie précédemment de groupes de Lie. Il est im-
médiat 4 montrer que cette fonction r’ vérifie avec la fonction r donnée la
méme équation différentielle linéaire d’ordre 1, qu’est la condition (3). Mais
alors d’aprés le théoréme sur 1’unicité de la solution d’un systéme différentiel
linéaire d’ordre 1, ayant en un point la valeur initiale donnée, les fonctions
r et ¥, ayant méme valeur au point x, sont donc identiques.

Ces remarques étant faites, considérons 1’application

RUXWXU—>UXG XU,
(y, u, x)’_’(y’ f(y, x)'Px(u)> X) >

qui est une représentation locale de groupoides de Lie d’aprés les relations
4 et (5). Elle induit évidemment la représentation infinitésimale R donnée.

Remarque. Ce théoréme montre, une fois de plus, la nécessité de considérer
la notion de groupoide de Lie introduite par C. Ehresmann,qui est cependant
équivalente a celle plus connue d’espace fibrés principaux a groupe structural
de Lie. Il montre ’analogie entre groupoide de Lie et groupe de Lie (voir
[4]); nous avons pu montrer par ailleurs I’existence d’une application Exp.
de A(®) dans @, qui vérifie, dans un sens 2 préciser, I’analogue de la formule
de Campbell-Hausdorff comme dans le cas des groupes de Lie.

3. Espace de prolongement différentiable et dérivation de Lie

Dans toute la suite, E désigne un espace fibré vectoriel (différentiable) sur
V', dont p est la projection.

Définition de Vespace de prolongement différentiable. FE est un espace
de prolongement différentiable de ¥, si a tout f, difféomorphisme local de V
de source U il correspond un morphisme f de fibrés vectoriels de E;U
(=p~X(U)) dans E|f(U), de telle maniere que



38 NGO VAN QUE

- A~ P~ -
(6) pof=fop, ldg=1Idgy, fog=fcg,

et tout groupe local de transformations sur ¥ se releéve ainsi en un groupe
local de transformations sur E (condition de différentiabilité).

Pour la définition exacte de groupe local de transformations nous renvoyons
le lecteur a la monographie de R. Palais [3]. Rappelons aussi que tout champ
de vecteurs X sur V' définit un groupe local de transformations & un parameétre
sur ¥, que nous noterons Exp. tX, ou t est le paramétre réel. Et si Y est
un autre champ de vecteurs, nous avons

(7)  Exp-tX o Exp-tY = Exp-(tX + 1Y + %Z[X, YD) + 0(F)

(Campbell-Hausdorff),
(8) Exp-(—tX) c Exp-(—tY) o Exp-tX - Exp-tY
= Exp-(#[X, Y]) + 0() .

Si ¥V est compact, Exp-tX est en fait un groupe global de transformations a
un parameétre. Nous allons supposer a partir de maintenant que ¥V est com-
pact, ce qui n’est en fait nullement nécessaire sauf dans la partie suivante ol
nous voulons appliquer le théoréme de Peetre. Alors si s est une section de
E, pour tout ¢

S, = ﬁp-(—tX) osoExp-tX
est une nouvelle section de E. Posons

LX)(s) = lim 5= S
t—0 t

cette limite étant définie d’apres la condition de différentiabilité. £ (X)(s) est
une nouvelle section de E, qu’on appelle la dérivée de Lie de s par rapport
au champ de vecteurs X. Il est immédiat de vérifier que tout champ de
vecteurs X définit ainsi un opérateur différentiel d’ordre 1 de E dans E, tel
que si f est une fonction sur V,

(9) Lx)(fs) = (X-Ns + fLX)(s) .

Et d’aprés les relations (7) et (8) précédentes, nous avons pour tout couple
de champs de vecteurs X et ¥

(10) L@X + pY) = a2 (X) + BL(Y) ,
« et B étant des nombres réels,

(11) LXyo ¥y~ FYV)o X)) = L(X,Y)]) .
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4. Théoreme de prolongement infinitésimal

Prenons une section s de E et considérons ’opérateur %, qui fait cor-
respondre a tout champ de vecteurs X sur V la section #(X)(s). D’aprés
les relations (9) et (10), cet opérateur est en fait un morphisme R-linéaire de
faisceaux sur V':

%::T —E,
X X)) .
Comme V est supposé compact, Z; est donc d’aprés le théoréme de J. Peetre
un opérateur différentiel d’un certain ordre k de T dans E. En supposant que
k est plus grand que 1, la relation (9) montre encore que l’opérateur dif-
férentiel Z ,, est de méme ordre k£ que Z, pour toute fonction f sur V. Et
d’autre part, V' étant compact, le module des sections de E est de type fini

sur I’anneau des fonctions de V, i.e. il existe un nombre fini de sections s;,
telles que toute section s de E soit de la forme

s =fis, .

Nous en concluons que pour toute section s de E, I'opérateur £, est un
opérateur différenticl d’ordre fixe &, en désignant par &k la borne supéricure
des ordres de Z,,. Z, définit donc un morphisme de fibrés vectoriels

R T(T) —E .

La relation (8) montre encore que nous avons ainsi un morphisme de
faisceaux de 0-modules sur V

Z:T(I) — A (I(E)) ,
o — Z(o) ,

ou si nous considérons Z(¢) comme un opérateur différentiel d’ordre 1 de E
dans E (voir exemple 2 de § 1), nous avons

Z(0):E—E,
s— R(0) .

Et il est facile de montrer que d’aprés la relation (11) de § 3, le morphisme
Z est aussi un morphisme de faisceaux de R-algébre de Lie, les structures de
faisceaux de R-algebre de Lie de J,(T) et de A(JI(E)) étant respectivement
définies dans I’exemple 1 de 2 de § 1. Ainsi nous avons démontré la proposi-
tion suivante

Proposition. Si E est un espace fibré de prolongement différentiable de V
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il est défini canoniquement une représentation & infinitésimale du groupoide
de Lie II* des jets d’un certain ordre k des difféomorphismes locaux de V
dans le groupoide de Lie II(E).

Maintenant nous sommes en mesure de démeontrer le théoréme que nous
avons en vue

Théoréme. Si E est un espace fibré de prolongement différentiable d’une
variété compacte V', E est un espace de prolongement infinitésimal d’un certain
ordre k de V.

Demonstration. 11 revient a dire qu’il existe une représentation de I7*
dans II(E). Or d’aprés la proposition précédente et le théoréme de § 2, nous
avons une représentation locale R de /7* dans //(E), définie sur un voisinage
U de I’espace des unités. Nous allons montrer que cette représentation locale
admet une extension globale.

En effet, désignons par /I* le groupoide abstrait des germes des difféomorph-
ismes locaux de V'; si f est un difféomorphisme local défini sur un voisinage
d’un point x de V, nous noterons j.f son germe en x. La condition (6) de la
définition de I’espace de prolongement différentiable veut dire aussi que nous
avons une représentation p de [7* dans [7(E), nécessairement telle que si jf
est dans U, on ait

p(zf) = R -

11 reste & démontrer que plus généralement p(j%f) ne dépend que du jet d’ordre
k en x de f, ou si g est un autre difféomorphisme local tel que jig = j%f, on a

0G28) = p(izf) -
Orona

p(z8) 7" p(%f) = 087" © f)
et come jig™! o f = %, I'unité en x de IT*, évidemment un élément de U,

p(7e8) -p(if) = p(og ™ o ) = R(587 o ) = %,
unité en x de [I(E).
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